Thermochimica Acta, 92 (1985)791-793 Elsevier Science Publishers B.V., Amsterdam

THERMAL AND X-RAY STUDY OF FeH3 (PO4)2.2,5 H20

Mustafayev N.M., Yolchiyev Ya.M., Gasimov V.A., Djafarov G.G., Kuliyev T.Z. Institute of Inorganic and Physical Chemistry of the Academy of Sciences of the Azerb.SSR (USSR).

ABSTRACT

The monocrystals synthesized at hydrothermal crystallization in Fe₂O₃-P₂O₅-H₂O system have been investigated by the thermal X-ray structure methods in vacuum. It have been considered the products of decomposition in vacuum at the temperatures $20^{\circ}-250^{\circ}$ C and above these temperatures. The corresponding interplane distances d_{hke} are given.

INTRODUCTION

The determination of crystal structure of $GaH_3(PO_4)_2 \cdot 2,5 H_2O$ showed that the compounds such as $MH_3(PO_4)_2 \cdot 2,5 H_2O$ (where M are Ga, Al, Fe) having a framework structure with quite large caves which consist of eight-membered rings, can be used as a high selective adsorbents I.

METHOD AND MATERIALS.

As subject of present investigations there were monocrystals $FeH_3(PO_4)_2 \cdot 2,5 H_2O$ obtained, at hydrathermal crystallization in $Fe_2O_3-P_2O_5-H_2O$ system at 120°C as transparent colourless well shaped hexagonal prisms. Preliminary hexagonal cells constans were obtained by photomethod and then refined at automated diffractometer "Syntex P2" (MoK_d - radiation, graphite monochromator The final parameters are:

a=9,078 Å, c=16,773 Å.

Thermo-X-ray investigations have been carried out invacuum (UTDD-2000, $1\cdot10^{-4}$ mm, DRON-2,0) at heating from 20° to 1000°C.

RESULTS AND DISCUSSION

The analysis of diffractograms obtained (table 1) shows that in vacuum at room temperature the intensity of some lines decrease while lines fully completeling disappear. This intensity decrease also accomplished decrease elementary cell constans

Table 1.

X-ray	powder	data	for	FeH3(P04)2.5	^H 2°	in	different	con-
ditions.								

	I		II		III		IV	
hKL	J	d(Å)	J	đ	J	dÌ	J	đ
002 100 101 102	10 18 100 45	8.393 7.900 7.176 5,776	100 3 5	7,047	15 100 40	7,803 7,059 5,703	100	7,196
110 111 112	50 24 80	4.543 4.353 4.026	3 5 45 20	4,497 4,291	40 35	4,529 4,320	20	4,366
200	16	3.945					15	3,969
202 113	12 25 15	3.717 3.581 3.417	15	3,562	18	3,542	30	3,596
203 114(105) 210 211 204	45 90 8 20 30	3.232 3.094 2.992 2.946 2.879	35 45	3,187 3,058	30 60 10 10 20	3,216 3,064 2,978 2,931 2,866	15 15	3,262 3,153
006(212) 106 301 205 214	30 12 15 10	2.809 2.650 2.601 2.550 2.442	30 15	2 ,7 80 2 .5 65	35	2.797 2.623	10	2.667
116(007) 303 206(107) 215 310 262(117)	6586656	2.392 2.376 2.284 2.243 2.178 2.116	5	2.215	10 10 5	2.265 2.213 2.151	15	2 .38 6
008 216 108 224 401 118 225 403 820 404 307	76 2886 58 50 55 10 55 10 55	2.094 2.043 2.043 1.998 1.946 1.895 1.875 1.859 1.859 1.876 1.778 1.769					20	2.107

I - initial, II - vacuum $1 \cdot 10^{-4} (20^{\circ})$ in during 2h.

III - after disturbance of vacuum the sample is under air at 20 h.

IV - in vacuum at 260°C.

(20°C under vacuum). The cell constant decreasing appears corresponds to remove process of weak bonded water molecules in eightmembered space caves. The repeated diffractogram obtained without vacuum in during 20 hours unaffected that indicates on the reversible nature of the process.

Table 2.

Cell constants	I	. II	III	IV
a (Å)	9,08	9,01	9,06	9,17
b (Å)	16,77	16,69	16,76	16,86

In spite of considerable increase of the cell constants at the further heating the product conserves its chemical individuality up to 400°C, after that there is observed the remove process of the strong bonded hydroxil groups which are coordinated to phosphor-oxygen tetrahedrons, in accompaniment of the amorphization process.

The further heating up to 1000°C do not influences to the nature of the product and do not changes amorphity.

CONCLUSIONS

- 1. It is established that under vacuum the cell constants are unreversably decreased, the crystal structure is unaffected.
- 2. The cell constants of the thermal decomposition products of FeH₃(PO₄)₂.2,5 H₂O had been determined.

REFERENCES

 Mustafayeva N.M., Amiraslanov N.P., Djafarov G.G., Gasymov V.A. "About the crystalline structure of GaH₃(PO₄)₂.2,5 H₂O III All-Union Conference on crystallochemistry of inorganic coordinating compounds. 18-22 July, 1983, Novosibirsk.